The volume of a cone

Let $D \subset \mathbb{R}^{n}$ be a set with n-volume $|D|$, and let $P=\left(a_{1}, \ldots, a_{n}, h\right) \in \mathbb{R}^{n+1}$ be a fixed point with $h>0$. We consider that cone C consisting of all line segments from P to a point in D. The canoe can be parametrized with the variables x_{1}, \ldots, x_{n}, , where $\left(x_{1}, \ldots, x_{n}\right) \in D$, $t \in[0,1]$ and the equations

$$
\left(y_{1}, \ldots, y_{n+1}\right)=\left(x_{1}, \ldots, x_{n}, 0\right)+t\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n},-h\right) .
$$

It is easy to see that

$$
\left|\frac{\partial\left(y_{1}, \ldots, y_{n+1}\right)}{\partial\left(x_{1}, \ldots, x_{n}, t\right)}\right|=h t^{n}
$$

and it follows that that $n+1$-volume of C is

$$
|C|=\frac{1}{n+1}|D| h .
$$

